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Twins by merohedry can be usefully divided in two classes. Class I: the twin operation is contained in the 
Laue symmetry of the crystal and twin-related reflexions have equal intensities; in this case the set of 
intensities collected from a twin is indistinguishable from that collected on a single crystal. Class II: 
at least one of the independent twin operations is contained in the lattice symmetry but not in the Laue 
symmetry of the crystal (twin-related reflexions differ in intensity); a knowledge of fractional volumes 
of crystals is necessary to solve the structure. The solution and refinement of a structure from measure- 
ments performed on a twin of class I are discussed. 

Introduction 

According to a recent classification (Donnay & Don- 
nay, 1974), TLQS (twin-lattice quasi-symmetry) twins 
show two or more reciprocal lattices differently oriented, 
giving rise to double or multiple diffraction spots, while 
TLS (twin-lattice symmetry) twins show a single orien- 
tation of the reciprocal lattice with single diffraction 
spots. TLQS twins are generally recognizable simply by 
optical observations; TLS twins, however, are optically 
indistinguishable, except those that unite a right-han- 
ded crystal with a left-handed one (without submicro- 
scopic intergrowth), which can be detected by deter- 
mination of the optical activity. It should be added, 
however, that the exact orientations of the crystals in a 
TLS twin may sometimes be altered by macroscopic 
deformations [cJl a case in Catti & Ferraris (1976)], so 
that some or all of the reflexions are multiple even 
though corresponding spots always have the same 0 
value, but different co values (Weissenberg photo- 
graphs); care should be taken in this instance, since 
some particular sections of the reciprocal lattice of a 
TLQS twin can also show multiple reflexions with the 
same 0 value and different co, and confusion could arise 
between the two cases. 

The case of twinning which gives more trouble in 
X-ray structural studies, and which we analyze here, is 
that of TLS twins with twin index= 1, where the twin 
lattice and the crystal lattice are one and the same. 
After Friedel (1926), these are called twins by mero- 
hedry, since the crystal symmetry is a merohedry of 
order n (subgroup of index n) of the symmetry of its 
lattice: therefore, the twin by merohedry has one or 
more symmetry operations which are not present in the 
crystal, but which are present in the crystal lattice. 

Twins by merohedry and Laue symmetry of the crystal 

Twins by merohedry can be usefully grouped in two 
classes, in order to explain their diffraction behaviour. 
Twins of class I show the same crystal Laue symmetry 
as the lattice symmetry, and therefore the twin opera- 

tion belongs to the Laue symmetry of the crystal. All 
these twins are twins by hemihedry, and therefore 
contain only two crystals; the centre of inversion can 
always be chosen as a twin operation: for instance, a 
crystal of class 2 could give a twin with 2/m' symmetry, 
and either m' or ]" can be considered to be the twin 
operation [for the symbolism see Curien & Donnay 
(1959)]. In a twin of unit volume the intensity It of a 
reflexion is actually contributed by two reflexions, one 
from each crystal, which are equivalent by Laue sym- 
metry; let their intensities per unit volume be/1 and/2  
respectively. As long as Friedel's law is valid (the 
anomalous scattering is not taken into account), we 
have: 

I, =11= I2 . (1) 

It can be inferred that, on an absolute scale, the set of 
intensities measured on the twin is identical with one 
that would be measured on a single crystal (absorption 
is neglected). 

Class II comprises twins with the Laue symmetry of 
the crystal lower than the crystal lattice symmetry, so 
that at least one of the independent twin operations is 
contained in the lattice symmetry but not in the Laue 
symmetry of the crystal. Twins by hemihedry, tetarto- 
hedry and ogdohedry (these are possible only for 
crystals of class 311) can be observed; they contain 
two, four and eight crystals respectively. In twins by 
hemihedry, the only independent twin operation does 
not belong to the crystal Laue symmetry (and it is 
never a centre of inversion). In twins by tetartohedry 
and ogdohedry there are always also independent twin 
operations which belong to the crystal Laue symmetry, 
except for twins 6'"/m'" 2'/m' 2"/m" made up of four 
crystals of class 311,* where both twin operations are 
not contained in the Laue symmetry. The intensity of a 
reflexion of a twin by hemihedry (unit volume) is con- 
tributed by two reflexions which are not equivalent by 

* The lattice must be hexagonal primitive, in order to have 
a true twinning by merohedry; with a rhombohedral lattice, 
a twinning by reticular merohedry would actually be present. 
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Laue symmetry, so that Ix ~I2 and, if v is the volume 
of crystal 1, 

It= vla + ( 1 -  v)I2 . (2) 

This equation has already been discussed (e.g., Britton, 
1972), but without being related to the problem of the 
crystal Laue symmetry. An example of this kind could 
be a twin with 4/m 2'/m' 2'/m' symmetry formed by 
two crystals of class 4/m. As for twins by tetartohedry, 
let us consider the case of a crystal of class 4 which 
gives a twin with 4/m' 2"/m"' 2"/m'" symmetry made 
up of four individuals: then a reflexion of the twin is 
contributed by four reflexions, one from each indi- 
vidual; we have that 11 = I2  ~/3 = 14, where reflexions 
1 and 2 and reflexions 3 and 4 are related by the twin 
operation contained in the crystal Laue symmetry, and 
reflexions 1 and 3 and reflexions 2 and 4 are related by 
the other twin operation, which does not belong to the 
crystal Laue symmetry. If v is the sum of volumes of 
crystals 1 and 2, then: 

Ir=vI1 + ( 1 - v ) I 3 .  (3) 

Clearly the set of intensities measured on this twin 
could not be distinguished from one given by the twin 
of the previous example. A different case would be that 
of a twin 6"'/m'" 2'/m' 2"/m" formed by four crystals 
of class 311, since then the twin reflexion would be 
contributed by four inequivalent reflexions: 

I ,=vlIl+v212+v313+(1-vl-v2-v3)14. (4) 

In order to solve the crystal structure, a knowledge 
of the fractional volume of one or more of the crystals 
forming the twin is necessary for twins of class II, but 
not for twins of class I. It should be added that twins 
of class I cannot be distinguished from single crystals 
in all physical properties which depend on volume; the 
diffraction intensity is a particular example. 

If the anomalous scattering is to be taken into ac- 
count, then equation (2) holds instead of (1) for twins 
of class I also. The knowledge of v would in principle 
allow a determination of the polarity, but it would be 
a hopeless task inmos t  cases, owing to the small dif- 
ference between/1 and I 2 ; the best case is for v ~ 0, and 
the worst one for v_0.5.  

Table 1 shows the occurrence of the two classes of 
twins by merohedry in the 32 crystal point groups. The 
diffraction symmetry of twins of class II is generally 
given by the Laue point group of the crystal; however, 
if the parts related by the twin operation not contained 
in the crystal Laue symmetry have the same volumes, 
then a diffraction symmetry equal to the lattice sym- 
metry is simulated, as can be easily seen by inspection 
of (2), (3) and (4). 

Solution of the structure for twins by merohedry 
of class I 

Let us investigate what may happen in the solution and 
refinement of a crystal structure, if the intensities have 

Table 1. Occurrence of the two classes of twins by mero- 
hedry in the 32 crystal point groups. 

Crystals belonging to a vertical series of point groups can give 
twins with the symmetry shown in parentheses below. The 
five trigonal groups appear twice, once in the R lattice and 

once in the P lattice (Donnay, 1969). 
Lattice I 

Triclinic 1 
(13 

Monoclinic 2 
m 

(Z/m) 
Orthorhombic 222 

mm2 
(mmm) 

Tetragonal 4 4 

(4/m) 4/m 
422 
4mm 
"42m 

(4/mmm) 
Rhombohedral 31 31 

(~I) ~I 
32 
3m 

0m) 
Hexagonal 311 311 

(51 I) 311 
321 321 
3ml 3ml 

(~ml) ~ml 
6 6 

(6/m) 6]m 
622 
6ram 
"~2m 

(6]mmm) 
Cubic 23 23 

(m3) m]g 
432 
~3m 

(4/mmm) 

(3m) 

(6/mmm) 

(m-3m) (m~m) 

been collected on a twin of class I that was not recog- 
nized as such. The outcome will be different, if the 
correct space group or a wrong one is used. 

Correct space group 
The results are the same as if intensities from a single 

crystal had been used, even though the quality of the 
results can be worse. Broadening, possibly asymmetric- 
al, of diffraction peaks may take place (cf. Catti, Fer- 
raris & Franchini-Angela, 1976); distortions of contact 
surfaces on the atomic scale may be caused by twin- 
ning: if a large fraction of the twin is involved in the 
phenomenon (e.g., polysynthetic twinning), an in- 
crease of the apparent thermal motion can result. 

Several reasons may have led to the correct space 
group: (i) the space group is already known for certain; 
(ii) statistical tests on the intensities show a lower sym- 
metry than the Laue symmetry; in fact, the statistical 
distribution of intensities depends on the symmetry of 
the cell content only; (iii) information on the space 
group has been given by vector-space analysis (Buerger, 
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1959); (iv) the number of molecules per cell is equal to 
the general multiplicity of a space group in a mero- 
hedral point group, and so it is lower than the multi- 
plicity of the point group corresponding to the ob- 
served Laue symmetry; besides, there are good reasons 
to believe that the formula unit cannot be in a special 
position; (v) the correct space group is found by trial 
and error. 

Wrong space group 
The crystal structure usually cannot be solved. How- 

ever, if the symmetry of the crystal is close to the twin 
symmetry, a partial solution (cf. Catti, Ferraris & 
Franchini-Angela, 1976) or even a complete solution 
can be achieved; in the latter case, some structural 
features will be ascribed to disorder. In fact, in such a 
solution, because of the higher symmetry of the space 
group considered the atoms will appear either in 
special positions (which correspond only approximately 
to the positions in the correct space group) or in general 
positions with the following two possibilities: (a) the 
atoms seem to lie statistically on sites related by false 
symmetry elements; (b) two sets of positions, which are 
independent in the true space group, by twinning 
simulate a single set of equivalent positions in the 
wrong space group. 

Conclusions 

It is probable that many crystal structures solved and 
described in the literature come from twins by mero- 
hedry, which have not been recognized as such. If 
twinning is suspected, one should try to solve the 
structure in the space group obtained by removing, 
with due mathematical precautions (cfi Rae, 1974), 

the elements for which atoms lie in special positions. 
It should be kept in mind that twins by merohedry 
with symmetry l '  (formed by two crystals with sym- 
metry 1) are also possible. 

In any case the term 'twinning by merohedry', 
should be used properly: only a crystal can be 'mero- 
hedral', not a twin; 'twinning by merohedry', 'twinning 
by pseudo-merohedry with obliquity (apparently) equal 
to zero', and 'twinning by reticular (lattice) merohedry' 
have distinct and well-defined meanings. In this respect 
a recent short note (Hawthorne, 1974) with the title 
Refinement o f  Merohedrally Twinned Crystals is mis- 
leading in respect of its content. 

We thank Professor J. D. H. Donnay for his criticism 
of the manuscript and for suggesting the insertion of 
Table 1. Research supported by the Consiglio Nazio- 
hale delle Ricerche, Roma. 
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